Universität Bonn

Molecular Physical Chemistry

Ultrafast Spectroscopy

Content:

1. Time vs frequency resolution
2. Time scales in nature
3. Relaxation methods (T-jump, p-jump)
4. Spectroscopy in shock waves
5. Flash photolysis
6. Differential optical properties
7. Examples
8. Electronic time-resolution limit
9. Pump-probe spectroscopy

1. Gaussian pulses
2. Instantaneous frequency and chirp
3. Fourier limit
4. Dispersion of light
5. Linear transmission and propagation
6. Group velocity dispersion and pulse broadening
7. Michelson interferometer
8. Autocorrelation functions
9. Dichroism and birefringence
10. Frequency doubling
11. Phase matching
12. Temporal vs spectral phase
13. Frequency-resolved optical gating

1. Historical
2. Lasing principle
3. Inversion in 3-level and 4-level systems
4. Examples: HeNe-Laser, Nd:Yag-Laser
5. Optical resonators
6. Properties of laser light
7. Modelocking
8. Acousto-optic modelocking
9. Synchronous pumping
10. Cavity dumping
11. Saturable absorption
12. Dispersion management
13. Passive modelocking
14. Kerr-lens modelocking
15. Ti:sapphire laser
16. Frequency doubling
17. Sum-frequency generation
18. Optical parametric conversion
19. OPG, OPO, OPA
20. Optical amplification

   1.   Electronically excited states
   2.   Radiative vs nonradiative decay
   3.   Fluorescence spectrometer
   4.   Time-correlated single photon counting
   5.   Finite time-resolution and instrument response function
   6.   Convolution and deconvolution
   7.   Photodetectors
   8.   Isomerization reactions of stilbenes
   9.   Thermal unimolecular decay
   10. Unimolecular "fall-off", low and high pressure limit
   11. Energy-specific rate constants
   12. Diffusion control, Smoluchowski limit
   13. Streak camera
   14. Fluorescence upconversion
   15. Stationary vs dynamic emission spectrum
   16. Time-dependent fluorescence Stokes shift
   17. Dynamic solvation
   18. Solvation correlation function
   19. Fluorescence depolarization and rotational diffusion
   20. Parallel vs perpendicular vs magic angle detection
   21. Anisotropy decay in the gas phase

   1.   Time scales of atomic motions
   2.   Why femtosecond spectroscopy?
   3.   Time-independent vs time-dependent Schrödinger equation
   4.   Eigenfunctions and stationary states
   5.   Non-stationary states (wavepackets)
   6.   Numerical propagation of wavepackets
   7.   Symmetrically-split operator
   8.   Some analytically solvable examples
   9.   Matter-field interactions and multiple states
   10.   Effective excited-state Hamiltonians
   11. Bound-to-free and bound-to-bound transtions
   12. Time-dependence picture of linear spectroscopy
   13. Linear Absorption and time-dependent Franck-Condon factor
   14. Linear emission and Raman-wavefunction
   15. Photodissociation of water
   16. Linear absorption spectrum of water in the ultraviolet
   17. Symmetric and asymmetric stretching coordinates
   18. Molecular motion along unstable orbits
   19. Partial absorption cross sections
   20. Local modes vs normal modes
   21. Bond-selective chemistry with lasers
   22. Nonlinear spectroscopy and spectroscopy of wavepackets
   23. Dynamic absorption and dynamic emission
   24. Bound-to-bound-to-bound sequence
   25. Bound-to-bound-to-free sequence

1. Full collisions vs half collisions
2. Heteronuclear and homonuclear triatomics
3. Potential energy surfaces
4. Bimolecular co-linear encounter
5. Mass-weighted Jacobi coordinates
6. Quantum dynamics simulations for the photodissociation of a triatomic
7. 2-body vs 3-body fragmentation
8. Exit channel dynamics
9. Energy partitioning
10. Photodissociations in condensed phases
11. Predissociation, trapping, caging, geminate and non-geminate recombination
12. The femtosecond spectrometer
13. Photodissociation of triiodide in liquid solution
14. Early-time dynamics and nuclear coherences
15. Spectroscopy of the transition state for the bimolecular encounter
16. Vibrational wavepackets of the diatomic fragment
17. "Classical movies"
18. Fragment recoil and chirped wavepackets
19. Spectroscopy with trains of optical pulses
20. Vibrational excitation and relaxation of the diatomic fragment
21. Vectorial properties of photodissociation reactions of triatomics
22. Initial anisotropy and transition state geometry
23. Inertial anisotropy decay and rotational excitation of the diatomic fragment
24. Diffusive anisotropy decay and rotational diffusion of the diatomic fragment

   1.   Control of reactivity at the macroscopic level
   2.   Control of reactivity at the molecular level'
   3.   Bond-selective chemistry with lasers
   4.   Vibrationally mediated photodissociation
   5.   Vibrational excitation schemes
   6.   Photodissociation of water from vibrational overtones
   7.   Partial absorption cross sections of vibrational overtones
   8.   Coherent control of the water dissociation with nanosecond lasers
   9.   Local modes vs normal modes
   9.   Intramolecular vibrational energy redistribution
   10. Properties of ultrashort laser pulses revisited
   11. The zero-dispersion compressor
   12. Pulse shaping
   13. Tannor-Kosloff-Rice scheme
   14. Optimal control theory
   15. "Teaching lasers to control experiments"
   16. Evolutionary algorithms
   17. An application - Adaptive pulse compression
   18. Examples for coherent control experiments from the lieterature
   19. Is coherent control economically attractive?
   20. What can we learn from coherent control experiments?

Wird geladen