Publications
- [84] "Unlocking C–C cleavage in the electrochemical toolbox" | N. Kornienko | Nature Catalysis - vol 7, issue 9, 957–958 - Sep 2024
- [83] "Terpyridine-Decorated Polymer Nanosphere Latex: Template Nanocarriers for the Synthesis of Cu–CeO2 Hollow Spheres" | F. Francois, Q. Hy T. Piogé, N. Kornienko, V. Maisonneuve, J. Lhoste, A. Guiet* S. Pascual* | Applied Materials & Interfaces - vol 16, issue 31, 40311-41720 - Aug 2024
- [82] "Mechanistic Insights into the Electrochemical Oxidation of 5-Hydroxymethylfurfural on a Thin-Film Ni Anode" A. Prajapati, N. Govindarajan*, W. Sun, J. Huang, H. Bemana, J. T. Feaster, S. A. Akhade, N. Kornienko*, and Christopher Hahn* | ACS Catalysis - vol 14, issue 13, 9640-10417 - Jul 2024
- [81] "Dimethylphosphite Electrosynthesis from Inorganic Phosphorus Building Blocks via Oxidative Coupling" J. Li, H. Bemana, N Kornienko* | RSC Sustainability - issue 8 - 2024
- [80] "Simple and Scalable Synthetic Route for Tunable Compositions of Multimetallic Oxyfluorides as Oxygen Evolution Reaction Catalysts" A Terry, S Mathiot, A Guiet, E Boivin, Z Gohari-bajestani, V Maisonneuve, A Hémon-Ribaud, R Moury*, N Kornienko*, and J Lhoste | ACS Applied Energy Materials - Jun 2024
- [79] "Copper nanoclusters: Selective CO2 to methane conversion beyond 1 A/cm²" M. Salehi, H.Al-Mahayni, A. Farzi, M. McKee, S. Kaviani, E. Pajootan, R. Lin, N. Kornienko, A. Seifitokaldani | Applied Catalysis B - vol 20, issue 20 - 2024
- [78] "Enabling epoxidation and oxygen atom transfer via leveraging the water oxidation pathway" A. Terry, and N. Kornienko* | Chem. Catalysis - vol 4, issue 3 - Mar 2024
- [77] "Combined Electrochemical and Spectroscopic Investigations of Carbonate-Mediated Water Oxidation to Peroxide" H. Bemana, and N. Kornienko* | iScience - vol 27, issue 4 - Apr 2024
- [76*] "Heterogeneous electrosynthesis of C–N, C–S and C–P products using CO2 as a building block" J. Li, H. Heidarpour, G. Gao, M. McKee, H. Bemana, Y. Zhang, C. T. Dinh*, A. Seifitokaldani*, and N. Kornienko* | Nature Synthesis - vol 3, issue 7 - Jul 2024, 809-824
- [75] "Electrocatalysis with Molecules and Molecular Assemblies within Gas Diffusion Electrodes" H. Bemana, M. McKee, *N. Kornienko | Chemical Science - issue 47 - 2023
- [74] "Highly Durable Nanoporous Cu2-xS Films for Efficient Hydrogen Evolution Electrocatalysis under Mild pH Conditions" R. Fernández-Climent, J. Redondo, M.García-Tecedor, M. C. Spadaro, J. Li, D. Chartrand, F. Schiller, J. Pazos, M. F. Hurtado, V. de la Peña O’Shea, N. Kornienko, J. Arbiol, S. Barja*, C. A. Mesa*, and S. Giménez* | ACS Catalysis - vol 13, issue 15 - Aug 2023
- [73*] "Hydrophobic molecular assembly at the gas-liquid-solid interface drives highly selective CO2 electromethanation" M. McKee, M. Kutter, D. Lentz, M. Kuehnel, N. Kornienko | ChemRxiv - Version 1 - Feb 2023, Nature Chemistry - accepted 2024
- [72] "Oxy-reductive C-N bond formation via pulsed electrolysis" Y. Zhang, H. Al-Mahayni, P. Aguiar, D. Chartrand, M. McKee, A.Seifitokaldani" N. Kornienko | ChemRxiv - version 1 - Dec 2022, Nature Chemistry - in. rev. (2023)
- [71] "Feeling the Weight"" N. Kornienko | Nature Catalysis - vol 5, issue 10 - Oct 2022
- [70] "Reversible transition of an amorphous Cu-Al oxyfluoride into a highly active electrocatalyst for NO3− reduction to NH3" Amandine Guiet, Alexandre Simonin, Hossein Bemana, Hasan Al-Mahayni, Junnan Li, Kiran Kuruvinashetti, Romain Moury, Annie Hémon-Ribaud, Daniel Chartrand, Vincent Maisonneuve, Jérôme Lhoste, Ali Seifitokaldani, Dominic Rochefort, Nikolay Kornienko | Chem Catalysis - vol 3, issue 5 - May 202 3
- [69*] "Electrochemical Formation of C-S Bonds from CO2 and Small Molecule Sulfur Species" J. Li, H. Al-Mahayani, D. Chartrand, A. Seifitokaldani" N. Kornienko | Nature Synthesis - vol 2, issue 8 - Aug 2023
- [68*] "Construction of C–N bonds from small-molecule precursors through heterogeneous electrocatalysis" J. Li, Y. Zhang, K. Kuruvinashetti N. Kornienko | Nature Reviews Chemistry - vol 6, issue 5 - May 2022
- [67] "Emerging opportunities with metal-organic framework electrosynthetic platforms" K. Kuruvinashetti, J. Li, Y. Zhang, H. Bemana, M. McKee N. Kornienko | Chemical Physics Reviews - vol 3, issue 2 - Jun 2022>
- [66] "A Super Basic Strategy" Y. Zhang, N. Kornienko | Joule - vol 6, issue 1, 1-268 - Jan 2022
- [65] "Emerging strategies for heterogeneous small-molecule electrosynthesis" Y. Zhang, J. Li, N. Kornienko | Cell Reports Physical Science (2021)
- [64] "Linker modulated peroxide electrosynthesis using metal-organic nanosheets" K. Kuruvinashetti, N. Kornienko | ChemElectroChem - vol 9, issue 10 - May 2022
- [63] "Electrocatalytic Carbon Dioxide Reduction in Acid" J. Li, N. Kornienko | Chem Catalysis - vol 2, issue 12 - Dec 2021
- [62] "Highly efficient water oxidation via a bimolecular reaction mechanism on rutile structured mixed-metal oxyfluorides" Z. Gohari-Bajestani, X.Wang, A. Guiet, R. Moury, J.-M. Grenèche, A.Hémon-Ribaud, Y. Zhang, D. Chartrand, V. Maisonneuve, A. Seifitokaldani, N. Kornienko, J. Lhoste | Chem Catalysis - vol 2, issue 5, 1114-1127 - May 2021
- [61] "Adaptive framework CO2 catalysis" N. Kornienko | Chem. - vol 7, issue 10 - Oct 2021
- [60] "Pushing the methodological envelope in understanding the photo/electro-synthetic materials-microorganism interface" K. Kuruvinashetti N. Kornienko | iScience - vol 24, issue 9 - Sep 2021
- [59] "C-N triple bond cleavage via trans-membrane hydrogenation" Y. Zhang, N. Kornienko | Chem Catalysis (2022)
- [58] "Conductive metal-organic frameworks bearing M-O4 active sites as highly active biomass valorization electrocatalysts" Y. Zhang, N. Kornienko | ChemSusChem (2021)
- [57] "Electrochemically Driven C-N Bond Formation from CO2 and Ammonia at the Triple-Phase Boundary" J. Li, N. Kornienko | Chem. Sci. (2022)
- [56] "Probing electrosynthetic reactions with furfural on copper surfaces" J. Li, N. Kornienko | Chem. Commun. In Press (2021)
- [55] "Towards atomic precision in HMF and methane oxidation electrocatalysts" Y. Zhang, J. Li, N. Kornienko | Chem. Commun. In Press (2021)
- [54] "Rational incorporation of defects within metal-organic frameworks generates highly active electrocatalytic sites" N. Heidary, D. Chartrand, A. Guiet, N. Kornienko | Chem. Sci. in press (2021)
- [53] "Amorphous iron-manganese oxyfluorides, promising catalysts for Oxygen Evolution Reaction under acidic media" K. Lemoine, Z. Gohari-Bajestani, R. Moury, A. Terry; A. Guiet, J.-M. Grenèche, A. Hémon-Ribaud, Annie, N. Heidary, V. Maisonneuve, N. Kornienko, J. Lhoste | ACS App. Energy Mater. In Press (2021)
- [52] "Operando spectroscopy of nanoscopic metal/covalent organic framework electrocatalysts" N. Kornienko | Nanoscale In Press (2020)
- [51] "Shell Isolated Nanoparticle Enhanced Raman Spectroscopy for Renewable Energy Electrocatalysis" K. Kuruvinashetti , Y. Zhang , J. Li, N. Kornienko | New J. Chem In Press (2020)
- [50] "Metal-based nanomaterials for efficient CO2 electroreduction: Recent advances in mechanism, material design, and selectivity" V. C. Hoang, V. Gomes, N. Kornienko | Nano Res. 78, 105311 (2020)
- [49] "Speeding up Nanoscience and Nanotechnology with Ultrafast Plasmonics" N. Maccaferri, S. Meuret, N. Kornienko, D. Jariwala | Nano Lett. In Press (2020)
- [48] "Mechanochemical synthesis of cobalt/copper fluorophosphate generates a multifunctional electrocatalyst" K. Lemoine N. Heidary, Y. Inaguma, N. Kornienko | Chem. Comm.In Press (2020)
- [47*] "Electrochemically Triggered Dynamics Within a Hybrid Metal-Organic Electrocatalyst" N. Heidary, M. Morency, D. Chartrand, K. H. Ly, R. Iftimie, N. Kornienko | J. Am. Chem. Soc. In Press (2020)
- [46] "Operando Vibrational Spectroscopy for Electrochemical Biomass Valorization" N. Heidary, N. Kornienko | Chem. Commun.In Press (2020)
- [45] "A One-Pot Route to Faceted FePt-Fe3O4 Dumbbells: Probing Morphology–Catalytic Activity Effects in O2 Reduction Catalysis" K. J. Jenkinson, A. Wagner, N. Kornienko, E. Reisner, A. E. H. Wheatley | Adv. Func. Mater. In Press (2020)
- [44] "Surface Chemistry Modulates CO2 Reduction Reaction Intermediates on Silver Nanoparticle Electrocatalysts" T.G.A.A. Harris, D. Chartrand, N. Heidary, L. Prado-Perez, K. H. Ly, N. Kornienko | ChemRxiv in Press (2020)
- [43] "Disparity of cytochrome utilization in anodic and cathodic extracellular electron transfer pathways of Geobacter sulfurreducens biofilms" N. Heidary, N. Kornienko, S. Kalathil, X. Fang, K. H. Ly, H. F. Greer, E. Reisner | J. Am. Chem. Soc. In Press (2020)
- [42] "Heterogeneous Electrocatalytic Reduction of CO2 Promoted by Secondary Coordination Sphere Effects" J. Li*, Y. Zhang*, N. Kornienko | New. J. Chem. In press (2020)
- [41] "Electrochemical Biomass Valorization on Gold-Metal Oxide Nanoscale Heterojunctions Enables Investigation of both Catalyst and Reaction Dynamics with Operando Surface-Enhanced Raman spectroscopy" N. Heidary, N. Kornienko | Chem. Sci. In Press (2020)
- [40] "Host-guest Chemistry Meets Electrocatalysis: Cucurbit[6]uril on a Au Surface as Hybrid System in CO2 Reduction" A.Wagner, K. H. Ly, N. Heidary I. Szabo T. Foeldes, K. I. Assaf , S. J. Barrow, K. Sokolowski, M. Al-Hada, N. Kornienko, M. F. Kuehnel, E. Rosta, I. Zebgerm W. M. Nau, O. A. Scherman, E. Reisner | ACS Catal. In Press (2019)
- [39] "2020 roadmap on two-dimensional nanomaterials for environmental catalysis" Y. Yang, M. Wu, X. Zhu, H. Xu, Si Ma, Y. Zhi, H. Xia, X. Liu, J. Pan, J.-Y. Tang, S.-P. Chai, L. Palmisano, F. Parrino, K. Liu, J. Ma, Z.-L. Wang, L. Tan, Y.-F. Zhao, Y.-F. Song, P. Singh, P. Raizada, D. Jiang, Di Li, RA Geioushy, J.Ma, K. Zhang, S. Hu, R. Feng, G. Liu, M. Liu, Z. Li, M. Shao, N. Li, J. Peng, W.-J. Ong, N. Kornienko, Z. Xing, X. Fan, J. Ma. | In Press (2019 )
- [38] "Investigation of mixed-metal (oxy)fluorides as a new class of water oxidation electrocatalysts" K. Lemoine, J. Lhoste, A. Ribaud, N. Heidary, V. Maisonneuve, A. Guiet, N. Kornienko | Chem. Sci. In Press (2019)
- [37] "Operando Raman probing of electrocatalytic biomass oxidation" N. Heidary, N. Kornienko | Chem. Commun. In Press (2019)
- [36] "Probing CO2 conversion chemistry on nanostructured surfaces with operando vibrational spectroscopy" N. Heidary, K. H. Ly, N. Kornienko | Nano Lett. In Press (2019)
- [35] "Advancing Techniques for Investigating the Enzyme-Electrode Interface" N. Kornienko, K. H. Ly, W. E. Robinson, N. Heidary, J. Z. Zhang, E. Reisner | Acc. Chem. Res. In Press (2019)
- [34] "Bio-inspired synthesis of reduced graphene oxide wrapped Geobacter sulfurreducens as a novel hybrid electrocatalyst for efficient oxygen evolution reaction" S. Kalathil, K. Katuri, A. Alzami, P. Pedireddy, N. Kornienko, P. Costa, P. Saikally | Chem. Mater. Accepted (2019)
- [33] "Interfacing formate dehydrogenase with metal oxides for reversible electrocatalysis or solar-driven reduction of carbon dioxide" M. Miller, W. E. Robinson, A. R. Oliveira, N. Heidary, N. Kornienko, J. Warnan, I. A. C. Pereira, E. Reisner | Angew. Chemie. Int. Ed. 141, 4659 (2019)
- [32] "Artificial Photosynthesis with Metal and Covalent Organic Frameworks (MOFs and COFs): Challenges and Prospects in Fuel-Forming Electrocatalysis" N. Heidary, T. G.A.A Harris. K.H. Ly, N. Kornienko | Phys. Plant. (2019)
- [31] "Oxygenic Photoreactivity in Photosystem II Studied by Rotating Ring Disk Electrochemistry" N. Kornienko, J. Z. Zhang, K. Ly, K. P. Sokol, A. Fantuzzi, R. van Grondelle, A. W. Rutherford, E. Reisner | J. Am. Chem. Soc. 140 (51), pp 17923–17931 (2018)
- [30] "Bias-free photoelectrochemical water splitting with photosystem II on a dye-sensitised photoanode wired to hydrogenase" K. P. Sokol, W. E. Robinson, J. Warnan, N. Kornienko, J. Zhang, A. Ruff. E. Reisner | Nature Energy 3, 944–951 (2018)
- [29*] "Semi-artificial photosynthesis: interfacing nature’s catalytic machinery with synthetic materials" Nikolay Kornienko, Jenny Zhang, Kelsey K. Sakimoto, Peidong Yang, Erwin Reisner | Nature Nanotechnology 13, 890–899 (2018)
- [28] "Catalysis by design: development of a bifunctional water splitting catalyst through an operando measurement directed optimization cycle" Nikolay Kornienko, Nina Heidary, Giannantonio Cibin, Erwin Reisner | Chemical Science, 2018, 9, 5322
- [27] "Aerobic conditions enhance the photocatalytic stability of CdS/CdOx quantum dots" David Wakerley, Khoa Ly, Nikolay Kornienko, Katherine Orchard, Moritz Kuehnel, Erwin Reisner | Chemistry: A European Journal, 24, 1-5 (2018)
- [26] "Solar Water Splitting with a Hydrogenase Integrated in Photoelectrochemical Tandem Cells" Dong Heon Nam, Jenny Z. Zhang, Virgil Andrei, Nikolay Kornienko, Nina Heidary, Andreas Wagner, Kenichi Nakanishi, Katarzyna P. Sokol, Barnaby Slater, Ingo Zebger, Stephan Hofmann, Juan C. Fontecilla-Camps, Chan Beum Park , Erwin Reisner | Angewandte Chemie, 57, 10595–10599 (2018)
- [25] "Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts" Hyo Won Kim, Michael B Ross, Nikolay Kornienko, Liang Zhang, Jinghua Guo, Peidong Yang, Bryan D McCloskey | Nature Catalysis, 2018. 1
- [24] "Enhancing Catalysis through Substitute-Driven Redox Tuning" Nikolay Kornienko | Joule 2018 2 (2), 207-209
- [23] "Physical Biology of the Materials–Microorganism Interface" Kelsey K Sakimoto, Nikolay Kornienko, Stefano Cestellos-Blanco, Jongwoo Lim, Chong Liu, Peidong Yang | J. Am. Chem. Soc., 2018, 140 (6), pp 1978–1985
- [22] "Extending the Compositional Space of Mixed Lead Halide Perovskites by Cs, Rb, K, and Na Doping" T. J Jacobsson , S. Svanström, V. Andrei, J. P. H. Rivett, N. Kornienko, B. Philippe, U. B. Cappel, H. Rensmo, F. Deschler, and G. Boschloo | J. Phys. Chem. C, Article ASAP
- [21] "Reticular Electronic Tuning of Porphyrin Active Sites in Covalent Organic Frameworks for Electrocatalytic Carbon Dioxide Reduction" C. Dierks*, S. Lin*, N. Kornienko, E. Kapustin, E. Nichols, C. Zhu, Y. Zhao, C. Chang, and O. M. Yaghi | J. Am. Chem. Soc.. 2017, 140 (3), 1116-1122
- [20] "Critical Role of Methylammonium Librational Motion in Methylammonium Lead Iodide (CH3NH3PbI3) Perovskite Photochemistry" M. Park*, N. Kornienko*, S. E. Reyes-Lillo, M. Lai, J. B. Neaton, P. Yang, and R. A. Mathies | Nano Lett. 2017, 17 (7), pp 4151–4157
- [19] "Cyborgian Material Design for Solar Fuel Production: The Emerging Photosynthetic Biohybrid Systems" K. Sakimoto, N. Kornienko, P. Yang | Acc. Chem. Res.. 2017 50 (3), 476-481
- [18] "Spectroscopic elucidation of energy transfer in hybrid inorganic–biological organisms for solar-to-chemical production" N. Kornienko*, K. Sakimoto*, D. Herlihy, S. Nguyen, A. P. Alivisatos, C. B. Harris, A. Schwartzberg, P. Yang Proc | Natl. Acad. Sci. 113, 42 (2016)
- [17] "Atomic Resolution Imaging of Halide Perovskites" Y. Yu, D. Zhang, C. Kisielowski, L. Dou, N. Kornienko, Y. Bekenstein, A. P. Alivisatos, P. Yang | Nano Lett. 16, 7530 (2016)
- [16] "Synthesis and Composition Tunable Cesium Lead Halide Nanowires through Anion-Exchange Reactions" D. Zhang, Y. Yang, Y. Yu, N. Gibson, A. Wong, S. Eaton, N. Kornienko, Q. Kong, M. Lai, Y. Bekenstein, A. P. Alivisatos, S. R. Leone, P. Yang | J. Am. Chem. Soc. 138, 7326 (2016)
- [15] "Anisotropic Phase Segregation and Migration of Pt in Nanocrystals En Route to Nanoframe Catalysts" Z. Niu, B. Becknell, Y. Yu, D. Kim, C. Chen, N. Kornienko, G. Somorjai, P. Yang | Nature Materials 15, 1188 (2016)
- [14] "Growth and Photoelectrochemical Energy Conversion of Wurtzite Indium Phosphide Nanowire Arrays" N. Kornienko, N. Gibson, H. Zhang, S. W. Eaton, S. Aloni, S. Leone, P. Yang | ACS Nano, 10, 5526 (2016)
- [13] "Single Nanowire Photoelectrochemistry" Y. Su, C. Liu, S. Brittman, J. Tang, A. Fu, N. Kornienko, Q. Kong, P. Yang | Nature Nanotechnology 11, 609 (2016)
- [12] "TiO2/BiVO4 Heterostructure Photoanodes Based on Type II Band Allignment" J. Resarco, H. Zhang, N. Kornienko, N. Becknell, H. Lee, J. Guo, A. Briseno, P. Yang | ACS Cent. Sci. 2, 80 (2016)
- [11] "Low-Temperature Solution-Phase Growth of Silicon and Silicon Containing Alloys" J. Sun, F. Cui, C. Kiseilowski, Y. Yu, N. Kornienko, P. Yang | J. Phys. Chem. C. In Press - 2016
- [10] "Atomic Level Structure of Pt3Ni Nanoframe Electrocatalysts by In-Situ X-Ray Absorption Spectroscopy" N. Becknell, Y. Kang, C. Chen, J. Resasco, N. Kornienko, J. Guo, N. Markovic, G. Somorjai, V. Stamenkovic, P. Yang | J. Am. Chem. Soc. 37, 15817 (2015)
- [9] "Atomically Thin Two-Dimensional Organic-Inorganic Hybrid Perovskites" L. Duo, A. Wong, Y. Yu, M. Lai, N. Kornienko, S. Eaton, A. Fu, C. Bishak, J. Ma, T. Ding, N. Ginsberg, L. Wang, A. Alivisatos, P. Yang | Science, 349, 6255 (2015)
- [8] "Metal-Organic Frameworks for Electrocatalytic Reduction of Carbon Dioxide" N. Kornienko*, Y. Zhao*, C. Kley, C. Zhu, D. Kim, S. Lin, C. Chang, O. Yaghi, P. Yang | J. Am. Chem. Soc., 137, 14129 (2015)
- [7] "Covalent Organic Frameworks Comprising Cobalt Porphyrins for Catalytic CO2 Reduction in Water" S. Lin*, C. Dierks*, Y. Zhang*, N. Kornienko, E. Nichols, Y. Zhao, A. Paris, D. Kim, P. Yang, O. Yaghi, C. Chang | Science, 349, 1208 (2015)
- [6] "Operando Spectroscopic Analysis of an Amorphous Cobalt Sulfide Electrocatalyst" N. Kornienko, J. Resasco, N. Becknell, C. Jiang, Y. Liu, K. Nie, X. Sun, J. Guo, S. Leone, P. Yang | J. Am. Chem. Soc., 137, 7448 (2015)
- [5] "Solution Phase Synthesis of Indium Gallium Phosphide Alloy Nanowires" N. Kornienko, D. Whitmore, Y. Yu, S. Leone and P. Yang | ACS Nano, 9, 3951 (2015)
- [4] "Mesoscopic Constructs of Ordered and Oriented Metal-Organic Frameworks on Plasmonic Silver Nanocrystals" Y. Zhao*, N. Kornienko*, Z. Liu,C. Zhu, S. Asahina, T. Kuo, W. Bao, C. Xie, O. Terasaki, P. Yang, O. Yaghi | J. Am. Chem. Soc., 137, 2199, 2015
- [3] "Visible Photoredox Catalysis: Selective Reduction of Carbon Dioxide to Carbon Monoxide by a Nickel N-Heterocyclic Carbene Isoquinoline Complex" V Thoi*, N. Kornienko*, C Margarit, P. Yang and C. Chang | J. Am. Chem. Soc., 135, 14413 (2013)
- [2] "Reflectivity Enhanced Two-Dimensional Dielectric Particle Array Monolayer Diffraction" A. Tikhonov, N. Kornienko, J. Zhang, L. Wang and S.A. Asher | J. Nanophoton., 6, 063509 (2012)
- [1] "2-D Array Photonic Crystal Sensing Motif" J. Zhang, L. Wang, J. Luo, A. Tikhonov, N. Kornienko, and S.A. Asher | J. Am. Chem. Soc., 133, 9152 (2011)
* selected current publications
Selected current publications
[76] Heterogeneous electrosynthesis of C–N, C–S and C–P products using CO2 as a building block
Electrochemical CO2 reduction (CO2R) has garnered interest as a sustainable route for the production of carbon-based fuels. Against this backdrop, this perspective explores how the scope and consequent impact of CO2R can be expanded through coupling with heteroatomic co-reactants. We begin with an evaluation of societal demand for basic C-X (C-N, C-S and C-P) bond containing chemicals and a look into how they are currently synthesized. Established routes for heteroatom coupling are then contrasted with emerging electrosynthetic approaches that use CO2 as a building block, which we classify into three distinct categories. Within each identified class of electrosynthetic coupling, a critical examination pinpoints the key aspects behind the catalyst, reactor, and molecule-specific reactivity that enables the coupling pathway. The perspective is concluded with a forward-looking analysis of what catalytic chemistry needs to be developed in the context of sustainable electrosynthesis and how computational tools may accelerate the progress in a joint effort. We further discuss upcoming challenges in both system design and technoeconomic/life cycle analysis that need to be addressed as this technology matures implementation at scale.
[73] Hydrophobic molecular assembly at the gas-liquid-solid interface drives highly selective CO2 electromethanation
The modularity of molecular catalysts enables the tuning of both active site and peripheral units to maximize functionality, thus rendering them as ideal model systems to explore fundamental concepts in catalysis. Hydrophobicity is often regarded as an undesirable aspect that hinders their dissolution in aqueous electrolytes. In contrast, we modified established cobalt terpyridine catalysts with hydrophobic perfluorinated alkyl side chains and took advantage of their hydrophobic character by utilizing them not as dissolved species in an aqueous electrolyte but at the gas-liquid-solid interfaces on a gas diffusion electrode (GDE) applied towards the electrochemical reduction of CO2. We found that the self-assembly of these perfluorinated units on the GDE surface results in a catalytic system selective for CH4 production, whereas every other Co terpyridine catalyst reported before was only selective for CO or formate. An array of mechanistic and operando spectroscopic investigations suggests a mechanism in which the pyridine units function as proton shuttles that deliver protons to the dynamic hydrophobic pocket in which CO2 reduction takes place. Finally, optimizing the system by integrating fluorinated carbon nanotubes as a hydrophobic conductive scaffold leads to a Faradaic efficiency for CH4 production above 80% at rates above 10 mA/cm-2, thus far unprecedented for a molecular electrocatalytic system.
M. McKee, M. Kutter, D. Lentz, M. Kuehnel, N. Kornienko
Nature Chemistry 2024
[69] Electrochemical Formation of C-S Bonds from CO2 and Small Molecule Sulfur Species
The formation of C-S bonds is an important step in the synthesis of pharmaceutical, biological, and chemical products. A very attractive green route to C-S bond containing species would be one driven through electrocatalysis using abundant small molecule precursors but examples within this context are largely absent from the literature. To this end, this work demonstrates the use of CO2 and SO32- as cheap building blocks that couple on the surface Cu-based heterogeneous catalysts to form hydroxymethanesulfonate, sulfoacetate and methane sulfonate for the first time, with Faradaic efficiencies of up to 9.5%. A combination of operando measurements and computational modelling reveal that *CHOH formed on metallic Cu is a key electrophilic intermediate that is nucleophilically attacked by SO32- in the principal C-S bond forming step. In all, the proof-of-concept for electrocatalytic C-S bond formation and mechanistic insights gained stand to substantially broaden the scope of the emerging field of electrosynthesis.
[68] Construction of C–N bonds from small-molecule precursors through heterogeneous electrocatalysis
Energy-intensive thermochemical processes within chemical manufacturing are a major contributor to global CO2 emissions. With the increasing push for sustainability, the scientific community is striving to develop renewable energy-powered electrochemical technologies in lieu of CO2-emitting fossil-fuel-driven methods. However, to fully electrify chemical manufacturing, it is imperative to expand the scope of electrosynthetic technologies, particularly through the innovation of reactions involving nitrogen-based reactants. This Review focuses on a rapidly emerging area, namely the formation of C–N bonds through heterogeneous electrocatalysis. The C–N bond motif is found in many fertilizers (such as urea) as well as commodity and fine chemicals (with functional groups such as amines and amides). The ability to generate C–N bonds from reactants such as CO2, NO3– or N2 would provide sustainable alternatives to the thermochemical routes used at present. We start by examining thermochemical, enzymatic and molecular catalytic systems for C–N bond formation, identifying how concepts from these can be translated to heterogeneous electrocatalysis. Next, we discuss successful heterogeneous electrocatalytic systems and highlight promising research directions. Finally, we discuss the remaining questions and knowledge gaps and thus set the trajectory for future advances in heterogeneous electrocatalytic formation of C–N bonds.
J. Li, Y. Zhang, K. Kuruvinashetti N. Kornienko
Nature Reviews Chemistry vol 6, issue 5 - May 2022
[47] Electrochemically Triggered Dynamics Within a Hybrid Metal-Organic Electrocatalyst
A wide array of systems, ranging from enzymes to synthetic catalysts, exert adaptive motifs to maximize their functionality. In a related manner, select metal-organic frameworks (MOFs) and related systems exhibit structural modulations under stimuli such as the infiltration of guest species. Probing their responsive behavior in-situ is a challenging but important step towards understanding their function and subsequently building from there. In this report, we investigate the dynamic behavior of an electrocatalytic Mn-porphyrin containing MOF system (Mn-MOF). We discover, using a combination of electrochemistry and in-situ probes of UV-Vis absorption, resonance Raman and infrared spectroscopy, a restructuration of this system via a reversible cleavage of the porphyrin carboxylate ligands under an applied voltage. We further show, by combining experimental data and DFT calculations, as a proof of concept, the capacity to utilize the Mn-MOF for electrochemical CO2 fixation and to spectroscopically capture the reaction intermediates in its catalytic cycle. The findings of this work and methodology developed opens opportunities in the application of MOFs as dynamic, enzyme-inspired electrocatalytic systems.
[29] Semi-artificial photosynthesis: interfacing nature’s catalytic machinery with synthetic materials
Semi-artificial photosynthetic systems aim to overcome the limitations of natural and artificial photosynthesis while providing an opportunity to investigate their respective functionality. The progress and studies of these hybrid systems is the focus of this forward-looking perspective. In this Review, we discuss how enzymes have been interfaced with synthetic materials and employed for semi-artificial fuel production. In parallel, we examine how more complex living cellular systems can be recruited for in vivo fuel and chemical production in an approach where inorganic nanostructures are hybridized with photosynthetic and non-photosynthetic microorganisms. Side-by-side comparisons reveal strengths and limitations of enzyme- and microorganism-based hybrid systems, and how lessons extracted from studying enzyme hybrids can be applied to investigations of microorganism-hybrid devices. We conclude by putting semi-artificial photosynthesis in the context of its own ambitions and discuss how it can help address the grand challenges facing artificial systems for the efficient generation of solar fuels and chemicals.