Selected publications
Solid Solution Formation between Vanadium(V) and Tungsten(V) Oxide Phosphate
The solid solutions (V1–xWx)OPO4 with β-VOPO4 structure type (0.0≤x≤0.01) and αII-VOPO4 structure type (0.04≤x≤0.26) were obtained from mixtures of VVOPO4 and WVOPO4 by conventional solid state reactions and by solution combustion synthesis. Single crystals of up to 3 mm edge length were obtained by chemical vapor transport (CVT) (800 700 °C, Cl2 as a transporting agent). Single crystal structure refinements of crystals at x=0.10 [a=6.0503(2) Å, c=4.3618(4) Å, R1=0.021, wR2=0.058, 21 parameters, 344 independent reflections] and x=0.26 [a=6.0979(2) Å, c=4.2995(1) Å, R1=0.030, wR2=0.081, 21 parameters, 346 independent reflections] confirm the αII-VOPO4 structure type (P4/n, Z=2) with mixed occupancy V/W for the metal site. Due to the specific redox behavior of W5+ and V5+, solid solutions (V1–xWx)OPO4 should be formulated as (VIVxVV1–2xWVIx)OPO4. The valence states of vanadium and tungsten are confirmed by XPS measurements. V4+ with d1 configuration was identified by EPR spectroscopy and magnetic measurements. Electronic spectra of the solid solutions show the IVCT(V4+ → V5+) and the LMCT(O2- → V5+). (V0.74W0.26)OPO4 powders exhibit semi-conducting behavior (Eg=0.7 eV).
S. C. Roy, R. Glaum, D. Abdullin, O. Schiemann, N. Quang Bac and K.-H. Lii
Z. Anorg. Allg. Chem. 2014, 640, 1876-1885.
Lithium Copper(I) Orthophosphates Li3–xCuxPO4: Synthesis, Crystal Structures, and Electrochemical Properties
Along the quasi-binary section Li3PO4 - CuI3PO4 three different phases Li3–xCuIxPO4 each with extended homogeneity range occur under equilibrium conditions (650≤ϑ≤700 °C). According to single-crystal X-ray structure analyses Phase 1 (0<x≤0.7) adopts the HT- or β-Li3PO4 structure type [Li2.6CuI0.4PO4, Pnma (no. 62), Z=4, a=10.4612(2) Å, b=6.1690(3) Å, c=4.9854(2) Å, R1=0.023, wR2=0.062, Goof=1.12] and Phase 2 (0.9≤x≤1.8) is isotypic to LT- or α-Li3PO4 [Li2.05CuI0.95PO4, Pnm21 (no. 31), Z=2, a=6.2113(8) Å, b=5.2597(7) Å, c=4.9904(5) Å, R1=0.040, wR2=0.108, Goof=0.98]. A preliminary structure model for the copper-rich Phase 3 (2.1≤x≤2.8) ["Li0.6CuI2.4PO4", P3 (no. 147), a=6.223(1) Å, c=5.3629(5) Å] could be refined to R1=0.07. Sharp 31P-MAS-NMR resonances observed in the spectra of Li2.6CuI0.4PO4 (δiso=10.4 ppm), Li2.05CuI0.95PO4 (δiso=12.4 ppm), and Li0.84CuI2.16PO4 (δiso=10.9 ppm) provide evidence for the absence of paramagnetic Cu2+ ions. Pure copper(I) orthophosphate CuI3(PO4) exists as a homogeneous melt (≥800 °C) and can be obtained as thermodynamically metastable solid by quenching. It is isotypic to Phase 3 [a=6.284(3) Å, c=5.408(5) Å]. Electrochemical delithiation of Li2.05CuI0.95PO4 (C/10, C/30) indicates two partially reversible oxidation processes between 3.75 V and 4.80 V (vs. Li0/Li+).
Katharina Snyder, Branimir Raguž, Wilfried Hoffbauer, Robert Glaum, Hartmut Ehrenberg, Markus Herklotz
Z. Anorg. Allg. Chem. 2014, 640, (5), 944-951
List of publications
[172]
"Fertilizers"
Robert Glaum
Book contribution „Applied Inorganic Chemistry“, Hrsg. T. Jüstel, R. Pöttgen, C. A. Strassert, De Gruyter Publ. (2022).
[171]
"Phosphates"
Thomas Staffel, Robert Glaum
Book contribution „Applied Inorganic Chemistry“, Hrsg. T. Jüstel, R. Pöttgen, C. A. Strassert, De Gruyter Publ. (2022).
[170]
"Mixed-metal monophosphate tungsten bronzes containing rhodium and iridium"
A. Karbstein, M. Weber, D. Lahr, J. Daniels, W. Assenmacher, W. Mader, F. Rosowski, S.A. Schunk, R. Glaum; Eur. J. Inorg. Chem. 2021, online.
https://doi.org/10.1002/ejic.202100047
[169]
"Multifrequency and Single Crystal EPR on V4+ in W-Doped β-Vanadyl(V) Phosphate: Hyperfine Coupling- and g-Tensor Values and Orientation"
Y. NejatyJahromy, Subrata Chandra R., R. Glaum, O. Schiemann; J. Magnet. Reson. 2020, accepted.
https://doi.org/10.1007/s00723-020-01303-0
[168]
"Synthesis-Controlled Polymorphism and Optical Properties of the Phyllosilicate-Analogous Borosulfates M[B2(SO4)4] (M = Mg, Co)"
P. Netzsch, F. Pielnhofer, R. Glaum, H.A. Höppe; Chem. Eur. J. 2020, 26, 14745-14753.
https://doi.org/10.1002/chem.202003214
[167]
"Electronic origin of negative thermal expansion in V2OPO4"
E. Pachoud, J. Cumby, J. Wright, B. Raguž, R. Glaum and J.P. Attfield ; Chem. Comm. 2020, 56, 6523-6526.
https://doi.org/10.1039/D0CC01920H
[164]
"Vanadium 3d charge and orbital states in V2OPO4 probed by x-ray absorption spectroscopy"
K. Murota, E. Pachoud, J.P. Attfield, R. Glaum, R. Sutarto, K. Takubo, D.I. Khomskii and T. Mizokawa; Phys. Rev. B 2020, 101, 245106.
https://doi.org/10.1103/PhysRevB.101.245106
[163]
"Polymorphs of VO(PO3)2: Synthesis and crystal structure refinement revisited"
S. Umlauf, M. Weber and R. Glaum; Z. Kristallogr. 2020, 235(8-9), 303-309.
https://doi.org/10.1515/zkri-2020-0037
[162]
"La- and Lu-agardite – preparation, crystal structure, vibrational and magnetic properties"
A.M. Golubev, E. Brücher, A. Schulz, R.K. Kremer and R. Glaum; Z. Naturforsch. B 2020, 75, 191-199.
https://doi.org/10.1515/znb-2019-0189
[161]
"Kälte und Feuchte – Na und ?"
T. Staffel, F. Wahl, S. Weber, R. Glaum; Farbe & Lack 2002, 103-109. Digitalisiert 2019.
[160]
"Selective Oxidation of n‑Butane over Vanadium Phosphate Based Catalysts: Reaction Network and Kinetic Analysis"
C. Schulz, F. Pohl, M. Driess, R. Glaum, F. Rosowski and B. Frank; Ind. Eng. Chem. Res. 2019, 58, 2492−2502.
https://doi.org/10.1021/acs.iecr.8b04328
[159]
"Mechanochemical dehydrocoupling of dimethylamine borane and hydrogenation reactions using Wilkinson’s catalyst"
C. Schumacher, D.E. Crawford, B. Raguz, R. Glaum, S.L. James, C. Bolm and J.G. Hernandez; Chem. Commun. 2018, 54, 8355-8358.
https://doi.org/10.1039/C8CC04487B
[158]
"Open-Shell 3d Transition Metal Nitridophosphates MIIP8N14 (MII=Fe, Co, Ni) by High-Pressure Metathesis"
S.D. Kloß, O. Janka, T. Block, R. Pöttgen, R. Glaum, and W. Schnick; Angew. Chem. Int. Ed. 2019, 58, 4685–4689.
http://dx.doi.org/10.1002/anie.201809146
[157]
"New 2D and 3D Coordination Polymers by Dehydration of 1∞[MII(tF-BDC)(H2O)4] (MII= Zn2+, Co2+, Ni2+ and tF-BDC2-= Tetrafluoroterephthalate)"
C. Stastny, B. Dolfus, C.T. Brombach, D. Dresen, S. Disch, R. Glaum and U. Ruschewitz; Z. Anorg. Allg. Chem. 2018, 644, 1423–1430.
http://dx.doi.org/10.1002/zaac.201800228
[153]
"αII-(V1-xWx)OPO4 catalysts for the selective oxidation of n-butane to maleic anhydride"
C. Schulz, S.C. Roy, K. Wittich, R. Naumann d’Alnoncourt, S. Linke, V.E. Strempel, B. Frank, R. Glaum, F. Rosowski; Catalysis Today 2019, 333, 113–119.
http://dx.doi.org/10.1016/j.cattod.2018.05.040
[152]
"BonnMag: Computer Program for Ligand-Field Analysis of fn Systems within the Angular Overlap Model"
A. Bronova , T. Bredow, R. Glaum, M.J. Riley and W. Urland; Journal of Computational Chemistry 2018, 39, 176–186.
http://dx.doi.org/10.1002/jcc.25096
[151]
"Analysis of Ligand Field Effects in Europium(III) Phosphates"
R. Glaum, W. Grunwald, N. Kannengießer and A. Bronova ; Z. Anorg. Allg. Chem. 2020, 646, 184–192.
http://dx.doi.org/10.1002/zaac.202000019
[150]
"Synthesis and Characterization of the High-Pressure Nickel Borate γ‑NiB4O7"
M.K. Schmitt, O. Janka, O. Niehaus, T. Dresselhaus, R. Pöttgen, F. Pielnhofer, R. Weihrich, M. Krzhizhanovskaya, S. Filatov, R. Bubnova, L. Bayarjargal, B. Winkler, R. Glaum and H. Huppertz; Inorg. Chem. 2017, 56, 4217−4228.
will be continued
Contact
Prof. Dr. Robert Glaum
Tel.: +49 228 73-5353
E-Mail: rglaum@uni-bonn.de
Room: 1.030
Adresse
Institut für Anorganische Chemie
Gerhard-Domagk-Str. 1
53121 Bonn